
A Method Base for the Situation-Specific Development of
Model-Driven Transformation Methods

Marvin Grieger, Masud Fazal-Baqaie, Stefan Sauer
University of Paderborn, s-lab – Software Quality Lab

Zukunftsmeile 1, 33102 Paderborn
{mgrieger, mfazal-baqaie, sauer}@s-lab.upb.de

1 Introduction

If a software system is valuable for ongoing business,
but resists evolution to ever-changing requirements, it
has become legacy. This may be due to the fact that
the underlying technological platform has become ob-
solete. A commonsense solution to this problem is to
transform the legacy system into a new environment
as part of a migration project. The technical transi-
tion is achieved by enacting a transformation method.
Such a method prescribes the activities to perform,
artifacts to generate, roles to involve or tools to use
in order to transform the system.

In previous work [1], we motivated that it is crit-
ical to use a transformation method that fits to the
situation at hand. In general, developing situation-
specific methods is supported by method engineering
approaches. However, we identified that current ap-
proaches do not provide a sufficient degree of con-
trolled flexibility. This means, they either do not pro-
vide sufficient flexibility to develop a method for the
project’s situation or they do not sufficiently guide,
i.e., control, the development of a method.

To address this problem, we developed a Situa-
tional Method Engineering (SME) framework called
MEFiSTo. The framework consists of two main con-
stituents, namely a Method Base and a corresponding
Method Engineering Process [2, pp.3-6]. The method
base contains predefined building blocks of transfor-
mation methods that are systematically assembled by
the corresponding method engineering process to form
a transformation method. In this paper, we give an
overview of the content of the method base.

2 Method Base

In MEFiSTo, the method base contains two differ-
ent types of building blocks of transformation meth-
ods, namely Method Fragments and Method Patterns.
Subsequently, we describe both types separately.

Method Fragments The method fragments con-
stitute atomic building blocks of transformation meth-
ods, i.e., a single artifact, activity, role or tool. In Fig-

Sy
st

em
 

La
ye

r
Pl

at
fo

rm
-S

pe
ci

fic
 

La
ye

r
Pl

at
fo

rm
 In

de
pe

nd
en

t 
La

ye
r

Legacy
Source
Code

Transformed 
Source
Code

Model 
Discovery

Code 
Generation

Language
Transformation

Platform

Reimplementation

Model of the 
Software System’s 

Architecture
(A-PIM)

Model of the 
Software System’s

Functionality
(F-PIM)

Database

Program
Comprehension

Program 
Concretization

Architecture
Recovery

Architecture
Adaptation

Architecture
Restructuring

Model of the 
Transformed System’s 
Source Code and its 

Environment
(T-PSM)

Model of the Legacy 
System’s Source Code 

and its Environment
(L-PSM)

Ar
ch

ite
ct

ur
e

R
ec

ov
er

y

Architecture
Adaptation

Model from/to Text 
Transformation

Endogenous
Model Transformation

Exogenous
Model Transformation

Model

Textual Artifact 
or System

Manual
Transformation

Activities

Artifacts

Restructuring

Figure 1: Method fragments stored in the Method
Base of the MEFiSTo framework

ure 1, the activities and artifacts stored in the method
base are illustrated.

The fragments have been derived from scratch,
based on principles that were defined as part of the
Architecture-Driven Modernization (ADM) [4] initia-
tive of the Object Management Group (OMG). ADM
aims to transfer model-driven engineering to the do-
main of software modernization: Models are used on
various levels of abstraction and are transformed into
each other by model transformations. Conceptually,
ADM is related to the Model-Driven Architecture
(MDA) by using the same levels of abstraction.

On the system layer, the source code of the legacy
system as well as the target system reside. Also, ex-
ternal systems like databases are located there.

Models on the platform-specific layer (PSMs) rep-
resent the legacy (L-PSM ) and the transformed sys-
tem (T-PSM ), respectively. The models describe the
source code in the form of platform-specific Abstract
Syntax Graphs (ASGs) by using metamodels of the
corresponding programming languages.

Models on the platform-independent layer (PIMs)
are used to represent the functionality (F-PIM ) and
the architecture (A-PIM ) of the system to transform.
The functionality can, for example, be represented in
the form of a platform-independent ASG by using



Basic Patterns

ReimplementationLanguage
Transformation

Conceptual
Transformation

Automated
Activity

Artifact or 
System

Model

Manual
Activity

Mandatory

Optional

Activities
colored 
black

Activities
colored 

grey

Composed Patterns

Language
Transformation-Based

Reimplementation

Concept Recognition-
Based 

Reimplementation

Concept Recognition-
Based Language
Transformation

F4 F5 F6

F1 F2 F3

Figure 2: Method Patterns stored in the Method Base
of the MEFiSTo framework

a metamodel of generic programming language con-
cepts, like loops, conditions, and function calls. How-
ever, the F-PIM is not limited to modeling source
code, but any information that represents the func-
tionality of the system. Examples being states of the
system, structures of user interfaces or dialog flows.
The architecture can be represented in the A-PIM by
modeling existing components or layers.

Method Patterns The method patterns encode
transformation strategies by indicating which method
fragments to customize. In this way, they provide
guidance on how to use the fragments. In total, we
observed 14 patterns, six are shown in Figure 2.

We distinguish Basic and Composed Patterns,
whereby basic patterns describe elementary trans-
formation strategies. The Language and Conceptual
Transformation pattern prescribe to automatically
convert a legacy system using a model-driven tool
chain. Thereby, they differ in the abstraction level
to use. When applying the former pattern (F1), the
transformation occurs on the platform-specific layer
by defining mappings between the syntactic elements
of the programming languages involved. In contrast,
when applying the latter pattern (F2), an intermedi-
ate representation of the functionality to transform on
the platform-independent layer is used. The Reimple-
mentation pattern (F3) prescribes to manually reim-
plement functionality by software developers. Com-
posed patterns result when combining one or more
basic patterns.

Each method pattern has its own characteristics
that determine its suitability in a given situation. For
example, we assume that the suitability of the lan-
guage transformation pattern is mainly determined

by the complexity of the equally named activity, i.e.,
the model transformation between the L-PSM and T-
PSM. This activity becomes complex, if the function-
ality to transform is realized significantly different in
both environments. In this instance, three different
concerns need to be addressed by the model transfor-
mation: First, the L-PSM needs to be interpreted (I)
to identify the functionality to transform. Then, the
functionality needs to be restructured (II) before be-
ing concretized (III) in the target environment. In
this situation, the conceptual transformation pattern
can be a better fit. It reduces the complexity of the
transformation by separating these concerns, i.e., it
specifies to use a separate activity for each concern.

3 Preliminary Results

We evaluated the MEFiSTo framework in an indus-
trial context, in which we transformed two legacy sys-
tems into new environments [3]. Thereby, we success-
fully developed and enacted situation-specific trans-
formation methods, using the proposed method base.

Based on our experience with the framework, we
conclude that, on the one hand, the method fragments
provide a high degree of flexibility in the development
of a transformation method. They can be used to ex-
press the transformation strategy that fits best to the
situation at hand. On the other hand, the method
patterns provide useful guidance in the development.
They can be seen as a terminology, i.e., vocabulary, to
discuss one of the most important concerns of a trans-
formation method, i.e., how to transform some func-
tionality. They provide a sufficient degree of abstrac-
tion to discuss this concern with different participants
of the migration project.

Acknowledgements This work is supported by the
Deutsche Forschungsgemeinschaft under grants EB
119/11-1 and EN 184/6-1

References

[1] M. Grieger and M. Fazal-Baqaie. Towards
a framework for the modular construction of
situation-specific software transformation meth-
ods. Softwaretechnik-Trends, 35(2):41–42, 2015.

[2] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk,
and M. Rossi. Situational Method Engineering.
Springer, Berlin, Heidelberg, 2014.

[3] M. Klenke and M. Grieger. Forms2ADF mal an-
ders: Wie aus einer Oracle-Vision Praxis wird.
DOAG News, (3):38–42, June 2014.

[4] W. M. Ulrich and P. Newcomb. Information Sys-
tems Transformation: Architecture-Driven Mod-
ernization Case Studies. 2010.


