
Reengineering of Legacy Test Cases:
Problem Domain & Scenarios

Ivan Jovanovikj, Marvin Grieger, Baris Güldali, Alexander Teetz
University of Paderborn, s-lab – Software Quality Lab

Zukunftsmeile 1, 33102 Paderborn
{ijovanovikj, mgrieger, bguldali}@s-lab.upb.de, alexander.teetz@upb.de

1 Introduction
The constantly changing conditions, either business-
driven or legal-driven, often lead to technological
changes which causes a change of the existing soft-
ware systems. According to [3], there are three pos-
sibilities of handling the changed conditions: to use
a standard software, to develop a new system or to
migrate an existing system. In this paper, we focus
on the third option. Software migration is a process
of transferring software systems into new environ-
ments without changing their functionality. In other
words, it must be ensured that the migrated system
behaves like the legacy system. A process that eval-
uates whether a system behaves in the intended way,
both from functional and non-functional perspective,
is software testing. In case of software migration, a
set of test cases which are used to validate the existent
system could already exist.

Software migration is established to reuse legacy
systems. Therefore, we want to reuse test cases as
well, especially since we have thousands of them.
However, during a migration scenario, two causes
need to be considered in the reuse of test cases: On
the one hand, the way in which the system is changed
implies a change of the test cases e.g. if the program-
ming language is changed. On the other hand, the
test environment may be exchanged in parallel due to
test management improvement requirement. This can
require restructuring of test cases. All in all, reusing
test cases in a migration scenario is a challenging task.

In order to face this challenge, we envision a solu-
tion in the direction of coevolution of test cases. The
idea is to provide a test cases reengineering method
which can reflect the changes from the migrated sys-
tem to the test cases as well as to modify them so they
can be reused in the new test tool.

In this paper, we first describe the problem domain
of reengineering test cases. Thereafter, we present two
general scenarios. Next, we present an observation of
an industrial context where these scenarios were ini-
tially identified. We conclude our work with a sketch
of possible solution direction and we raise some open
questions regarding the challenges related to the en-
visioned solution.

System
Environment

implies

implies

implies

Test
Cases System

changes

managed in

reengineersreengineers

runs on

changes

 System
 Migration

Testing
Tool

System
Environment

Change

Test Tool
Change

2

Test Case
Reengineering

tests

trigger process xyz dependency

Figure 1: Problem domain and possible scenarios in a
migration project

2 Problem Domain of Test Case
Reengineering

In a software migration scenario, two causes can influ-
ence the reengineering of test cases: system environ-
ment change or test tool change. When the system
environment changes, it triggers a migration of the
system to the new environment (left side of Figure 1).
On technical level, the migration is performed by en-
acting a transformation method that is an instance
of the well-known horseshoe model [1]. It includes
the following processes: reverse engineering, restruc-
turing and forward engineering. Reverse engineering
is "the process of analyzing a subject system to cre-
ate representations of the system in another form or
at a higher level of abstraction." [1]. Restructuring is
"the transformation from one representation form to
another at the same relative abstraction level, while
preserving the subject system’s external behavior" [1].
Finally, forward engineering is "the traditional pro-
cess of moving from high-level abstractions and logi-
cal, implementation-independent designs to the phys-
ical implementation of a system" [1].

Since changes occur during the restructuring pro-
cess, software migration implies test case reengineer-

ing, whose goal would be to enable appropriate set of
test cases for the migrated system. It should take into
account the changes from the restructuring process in
the software migration. Test cases, as the central ar-
tifact in the testing process, describe sequence of con-
ditions that have to be validated. Depending on the
used migration strategy (re-implementation, conver-
sion and encapsulation [3]) and the testing level (unit
test, integration test, system test), the existing test
cases are affected differently and need to be modified
in appropriate way, as mentioned in [2]. The changes
that appear here are of a semantic nature, i.e., the
conditions or the test data of the test cases need to
be modified.

Test case reengineering could be implied also by
a decision to change the testing tool (right side of
Figure 1). A test tool is the software that is used in
one or more testing activities. For example, it is used
for analysis, design and implementation of test cases.
Test cases have a structure which is dependent on the
testing tool characteristics. A change of the testing
tool would mean that the test cases would have to be
reengineered in order to match the characteristics of
the target test tool, so they would have to undergo
structural (syntactical) changes.

In the following section, we present an exemplary
scenario as observed in practice.

3 Exemplary Scenario
In an industrial context, we observed a project that
dealt with the reengineering of test cases. Thereby,
both causes were present, i.e., the system environment
as well as the test tools were exchanged. Figure 1
shows this particular scenario.

As a result, the reengineering of the test cases was
performed as follows: first, the change of the test tool
was addressed by defining a corresponding reengineer-
ing method, whereas the change of the system envi-
ronment needs to be addressed, it is still ongoing work.
The goal of the reengineering method was to migrate
the test cases in a way that improves the test cover-
age, the structuredness and the maintenance of test
cases. However, dealing with thousands of test cases
without a structure, with existing erroneous and obso-
lete test cases was not an easy task. The transforma-
tion method was automized up to some extent, using
transformation scripts, but still with a considerable
manual effort. Additionally, the transformation was
done in isolation, i.e., without migrating the software
system.

By our research, we aim to address the open prob-
lems of this scenario, i.e., the reengineering of the test
cases based on the migration of the system, setting
the needed manual effort to minimum. In that sense,
we aim to provide a solution concept to coevolve the
test cases. We sketch the idea in the next section.

4 Solution Idea
After we have seen the possible scenarios and the open
challenges, in the following we briefly discuss our so-
lution idea for test case reengineering, i.e., how to en-
able coevolution of test cases.

Test
Cases

Test
Cases

Test Case
Reengineering

Software
Migration

System System

Test
Model

Test
Model

System
Model

System
Model

Reverse
Engineering

Restructuring

Forward
Engineering

implies

Figure 2: Coevolution of test cases

Similarly as in the case of software migration, test
cases are reengineered by following the horseshoe
model, as shown in Figure 2. Since our focus is on
model-driven software migration, our envisioned so-
lution goes in the direction of model-based testing.
First, using extraction techniques, a test model is ex-
tracted from the existing test case. Then, the changes
from the artifacts in software migration on the same
abstraction level as the test model, are propagated to
the test model. In our opinion, propagating changes
from artifacts on the same abstraction level would be
easier than propagating them from higher abstraction
level directly to the existing test cases. The last step
would be to use the modified model to generate the
actual test cases for the migrated system. To the best
of our current knowledge, no work has been done in
this direction.

This solution idea raises some questions. First of
all, what level of abstraction would be most suitable
to relate the models and reflect the changes from the
software migration horseshoe to the test case reengi-
neering horseshoe? Then, what are the limitations for
automation of this process? Would it be suitable for
all types of test cases? Also, could the software migra-
tion benefit from the extraction of test models? We
envision to answer these questions by future research.

References
[1] E. J. Chikofsky and J. H. Cross II. Reverse engi-

neering and design recovery: A taxonomy. IEEE
Software, 1990.

[2] M. Grieger, B. Güldali, S. Sauer, and M. Mly-
narski. Testen bei migrationsprojekten. OBJEK-
Tspektrum, September 2013.

[3] H. M. Sneed, E. Wolf, and H. Heilmann. Software-
Migration in der Praxis: Übertragung alter Soft-
waresysteme in eine moderne Umgebung. dpunkt
Verlag, 2010.

