

MMSM 2014
Modellbasierte und modellgetriebene

Softwaremodernisierung
Workshop Proceedings

http://akmda.ipd.kit.edu/mmsm

19. März 2014

Universität Wien

im Rahmen der Konferenz Modellierung 2014

www.modellierung2014.org

http://akmda.ipd.kit.edu/mmsm
http://www.modellierung2014.org/

Organisatoren
Steffen Becker, s-lab, Universität Paderborn

Stefan Sauer, s-lab, Universität Paderborn

Benjamin Klatt, FZI Karlsruhe

Matthias Riebisch, Universität Hamburg

Thomas Ruhroth, TU Dortmund

Programmkomitee
Steffen Becker, s-lab, Universität Paderborn

Wilhelm Hasselbring, Universität Kiel

Elmar Jürgens, CQSE München

Benjamin Klatt, FZI Karlsruhe

Rainer Koschke, Universität Bremen

Claus Lewerentz, Universität Cottbus

Carola Lilienthal, C1 WPS Hamburg

Florian Matthes, TU München

Christof Momm, SAP Karlsruhe

Ralf Reussner, KIT Karlsruhe

Matthias Riebisch, Universität Hamburg

Thomas Ruhroth, TU Dortmund

Stefan Sauer, s-lab, Universität Paderborn

Hannes Schwarz, Universität Koblenz-Landau

Ulrike Steffens, HAW Hamburg

Detlef Streitferdt, TU Ilmenau

Andreas Winter, Universität Oldenburg

Christian Zeidler, ABB Forschungszentrum Ladenburg

Programm
Für die Vorträge sind jeweils 15min + 5min für direkte Fragen eingeplant. Am Ende jeder Session
findet ein Session-Panel mit allen Sprechern von 20 Minuten zu dem jeweiligen Themenblock statt. In
der letzten Session ist zusätzliche Zeit für eine offene Diskussion über aktuelle und zukünftige
Fragestellungen und Forschung in der modellbasierten und modellgetriebenen
Softwaremodernisierung vorgesehen.

Zeit Inhalt

08:30 - 10:00 Begrüßung

Keynote: "Semi-automated Abstraction of Architectural Views throughout the
Software Lifecycle" - Univ. Prof. Dr. Uwe Zdun

10:00 - 10:30 Kaffeepause

10:30 - 12:00 Models to Code to Models
"Why Models and Code Should be Treated as Friends"
Mahdi Derakhshanmanesh, Jürgen Ebert and Gregor Engels

"Reverse-Modellierung von Traceability zwischen Code, Test und Anforderungen"
Harry Sneed

"Towards a Reference Architecture for Toolbox-based Software Architecture
Reconstruction"
Ana Dragomir, Firdaus Harun and Horst Lichter

Session Panel

12:00 - 13:30 Mittagspause

13:30 - 15:00 Quality Aspects
"Model-Driven Load and Performance Test Engineering in DynaMod"
Eike Schulz, Wolfgang Goerigk, Wilhelm Hasselbring, André van Hoorn and Holger
Knoche

"Towards Quality Models in Software Migration"
Gaurav Pandey, Jan Jelschen and Andreas Winter

"A Tool-Supported Quality Smell Catalogue For Android Developers"
Jan Reimann, Martin Brylski and Uwe Aßmann

Session Panel

15:00 - 15:30 Kaffeepause

15:30 - 17:00 Evolution and Migration
"Architectural Restructuring by Semi-Automatic Clustering to Facilitate Migration
towards a Service-oriented Architecture"
Marvin Grieger, Stefan Sauer and Markus Klenke

"Why Determining the Intent of Code Changes Helps Sustaining Attached Model
Information During Code Evolution"
Michael Langhammer and Max E. Kramer

Diskussion und Zusammenfassung

Why Models and Code Should be Treated as Friends

Mahdi Derakhshanmanesh, Jürgen Ebert

University of Koblenz-Landau,
Institute for Software Technology

{manesh, ebert}@uni-koblenz.de

Gregor Engels

University of Paderborn,
Department of Computer Science

engels@upb.de

Abstract

Various approaches have been proposed to face the dif-
ficulties related to constructing and maintaining mod-
ern software systems. Often, they incorporate models
in some part of the development or evolution process.
Even the use of models at runtime seems to receive
more and more attention as a way to enable the quick,
systematic and automated application of change oper-
ations on software as it executes. Assuming that exist-
ing systems have been largely developed in code and
that novel target architectures depend on – or even
embed – models to some extent, the possible roles of
models and code as well as their interaction and inter-
changeability need to be thoroughly examined. In this
position paper, we attempt to initiate a discussion on
why models and code should become closer friends.

1 Introduction

Recent approaches to the construction and mainte-
nance of modern software systems rely on models to
a large extent. The most popular approach is the
Model Driven Architecture (MDA) where large parts
of the system are expressed in domain-specific repre-
sentations, i.e., in models. These models are trans-
formed stepwise towards a technical solution. Fur-
thermore, they can be changed quickly and the com-
plex technology-specific artifacts can be regenerated.
Hence, this approach supports the systematic adap-
tation of development artifacts. Whenever change is
required, the transformation chain needs to be retra-
versed and a new version of the software is generated,
compiled and deployed.

In addition, there are other approaches that tackle
the need for quicker (and possibly smaller) change
operations while the software is operating. In these
works, models are not discarded before deployment
but are shipped with the rest of the system. In fact,
these runtime models [2] are integral parts of the sys-
tem and they may even “drive” its execution. That is,
models – such as behavioral models – are interpreted
at runtime; no code is generated. The core idea can
be referred to as direct model execution.

Depending on the followed engineering approach,

the portion of used models and code varies. While we
believe that the use of models at runtime can support
software evolution by enabling adaptivity at differ-
ent levels of granularity, we are also aware of the fact
that code execution is still the established and better-
performing method. Therefore, the roles of models
and code as well as their dependencies need to be
well-understood to utilize the advantages of each side
when defining the target architecture in software de-
velopment as well as modernization.

In Section 2, we give examples of five typical rela-
tionships between models and code. Implications for
software design and development are covered in Sec-
tion 3, before we conclude the paper in Section 4.

2 Model and Code Relationships

Reflecting on parts of our previous work, especially
on the Graph-based Runtime Adaptation Framework
(GRAF) [1], we may state that at least five relation-
ship constellations will occur naturally during soft-
ware development that is based on mixing models
and code. The resulting spectrum of different cases
is sketched in Figure 1.

This spectrum can be seen as describing common
ways of using models and/or code, but it is also a
spectrum of non-functional properties of the resulting
software systems as it suggests the existence of tension
between efficiency (performance) and flexibility. The
underlying assumption is that software represented by
compiled code is less expensive than interpreting (be-
havioral) models w.r.t. memory consumption and ex-
ecution time [3]. Yet, models can be changed easier
at runtime. Hence, they are more flexible. Each con-
stellation in this spectrum is described subsequently.

Efficiency Flexibility

code only primarily code balanced primarily model model only

Figure 1: Model and Code Use in the Spectrum be-
tween Efficiency and Flexibility (Illustrative Sketch)

Code Only. The software consists of (application)
code and there are no models. Obviously, in this case,
no mediation between models and code is needed. The
system’s interfaces are implemented conventionally in
code. Furthermore, administration tasks such as in-
specting or modifying the software’s state are realized
in code, too. For instance, they may be implemented
with the programming language’s reflection capabili-
ties if supported.

Primarily Code. The code is the primary part
(e.g., w.r.t. the control flow) but it is extended by
models in places which need to be specifically flexible.
For instance, parts of the behavior that are expected
to be in need for (frequent) adaptation are expressed
in terms of UML activity diagrams, statecharts, or
Petri nets. In this case, the control flow – and poten-
tially any kind of additional data – is redirected from
code to models.

Balanced. A combination of the two previously
mentioned “pure” cases is applied. Data needs to be
synchronized bidirectionally between model and code
parts and each side can invoke behavior implemented
in the counterpart. In this case, both sides are closely
integrated and wired to each other. We can imag-
ine further cases, e.g., where behavioral models im-
plement interfaces defined in code.

Primarily Model. The code is seen as a library of
functionality and the main flow is actually dictated by
models. Actions implemented in code are orchestrated
by the model. Models can be seen as the primary part,
whereas code represents the secondary part. For ex-
ample, a model interpreter may trigger actions that
are realized in code related to drivers or existing mid-
dleware. The Service Oriented Architecture (SOA)
with its business process models is another example.

Model Only. The model part exists and there is
no code, at least no application code. In this case,
model interpreters are available – and potentially even
tightly integrated with the meta-models – making
models capable of stand-alone execution. This is the
most flexible solution, as any change to the models
impacts the software’s state and execution behavior
immediately. The collection of models and their in-
terpreters is the program.

3 Implications

In many traditional software engineering processes,
models are seen as the predecessors of code. The final
product is – in the end – still made up of code. Hence,
existing systems may be developed via model-based
or model-driven approaches but the final outcome is
usually comparable to “code only” software. To date,
models can be involved in all phases of the software
life-cycle: while the use of models in the early phases
supports documentation and communication (model-

based development) and the generation of code en-
ables more systematic and semi-automated construc-
tion (model-driven development) the use of models at
runtime supports primarily the adaptation of software
via query/transform/interpret operations [1].

When developing or evolving systems to meet the
ever-growing demand for faster turn-around times and
adaptation of a “life” system, models offer attractive
benefits as initially sketched. As a prerequisite, the
target architecture needs to be supported by an infras-
tructure that can manage the relationships between
models and code. In contrast to models@run.time [2],
these models are not necessarily reflective.

A common approach to realizing these capabilities
is to encode model semantics in the form of a model
interpreter that is developed in the same language as
the host programming language, e.g., Java. Hence,
type-conversion problems do not occur and model and
code are finally executed by the same virtual machine.
Models are not compiled and so no redundant data
needs to be stored for their execution. In the scope
of a modernization project, it seems to be a desirable
future goal to derive executable models from parts of
the code as a basis for further evolution.

4 Concluding Remarks

As first class entities of a software system, models
can play different roles with different relationships to
code. We claim that the relationships between mod-
els and code need to be revised in this new context.
In order to unleash the full potential of models (e.g.,
abstraction, flexible adaptation) and code (e.g., stable
tools, high performance) for realizing flexible software
architectures, we need a generic infrastructure that fa-
cilitates the integration of models and code as equally
valuable constituents of tomorrow’s software systems.
The recently accepted DFG project Model-Integrating
Self-Adaptive Components (MoSAiC), conducted to-
gether by the authors, will tackle this challenge.

Acknowledgments. The authors thank Thomas
Iguchi for fruitful discussions and proofreading.

References

[1] Mehdi Amoui, Mahdi Derakhshanmanesh, Jürgen
Ebert, and Ladan Tahvildari. Achieving Dynamic
Adaptation via Management and Interpretation of
Runtime Models. Journal of Systems and Soft-
ware, 85(12):2720 – 2737, 2012.

[2] Gordon Blair, Nelly Bencomo, and Robert B.
France. Models@run.time. Computer, 42(10):22–
27, 2009.

[3] Edzard Höfig. Interpretation of Behaviour Mod-
els at Runtime - Performance Benchmark and
Case Studies. PhD thesis, Technical University
of Berlin, 2011.

Reverse-Modellierung von Traceability
zwischen Code, Test und Anforderungen

Harry M. Sneed
ANECON GmbH, Wien

Abstrakt: In diesem Beitrag zur Modellierung der
architektonischen Abhängigkeiten zwischen Code, Test
und Anforderungen wird ein Reverse Engineering
Prozess zur Wiederherstellung von Traceability
zwischen Code-Bausteinen, Testfällen und
Anforderungen über die Anwendungsfälle geschildert.
Im Mittelpunkt des Prozesses steht ein Software-
Repository, das dazu dient die aus dem Code und dem
Test gewonnenen Abhängigkeiten zusammenzuführen.
Das Ziel ist festzustellen, welche Testfälle welche
Anforderungen testen und welche Code-Bausteine
welche Anforderungen implementieren.

1 Einführung

Ein wichtiges Ziel von Software Reengineering ist die
Herstellung von Links zwischen dem reengineered
Code, den Testfällen und den Anforderungen. Dies ist
eine Voraussetzung für die modellgesteuerte Evolution
des jeweiligen Systems. Erreicht wird dieses Ziel durch
mehrere automatische Schritte von der Analyse des
veränderten Codes bis zur Ergänzung der bestehenden
Anforderungen. Als Grundlage der Vorgehensweise
dient ein Software Repository in dem die
Grundelemente der Architektur, die Testfälle und die
Anforderungselemente in relationalen Tabellen
gespeichert werden. Die Wiederherstellung von
Traceability in bestehenden Software-Systemen hat eine
lange Vorgeschichte, die bis zu den ersten Studien über
Impact-Analyse Anfang der 90’er Jahre zurückreicht.
Die hier beschriebene Forschungsarbeit basiert auf den
vorausgegangenen Arbeiten von den Universitäten
Benevento in Italien [ACDM2002], Bern in der Schweiz
[GDS2006], Kentucky in den USA [Hayes2005] und an
den Universitäten Ilmenau und Hamburg in Deutschland
[Lehn2013].

2 Der Reverse-Engineering Prozess

2.1 Statische Source Code Analyse
Der erste Schritt auf dem Weg vom Code zum
Architekturmodell ist die Source-Analyse. Hier werden
die Grundelemente der Programmiersprache - die
Klassen, Schnittstellen, Methoden, Attribute und
Bedingungen - in dem Code erkannt und zusammen mit
ihrer Beziehungen in eine relationale Tabelle überführt.
Die Einträge in dieser Tabelle sind binäre Beziehungen
zwischen einem Basiselement und einem Zielelement.
Ein Basiselement kann z.B. ein Zielelement besitzen,
benutzen oder aufrufen. Die Elemente und
Beziehungsarten sind für jede Zielsprache festgelegt.

Mit dieser Beziehungstabelle wird das Repository
gefüttert. Es entstehen mehrere relationale Tabellen,

eine für jeden Beziehungstyp. Aus diesen Tabellen wird
die statische Codestruktur abgebildet.

2.2 Dynamische Code Analyse
In dem zweiten Schritt wird der Code instrumentiert und
dynamisch analysiert. Instrumentiert wird auf der
Methoden- bzw. Prozedurebene. In jede Methode wird
ein Trace-Punkt gesetzt der eine Monitorklasse aufruft.
Die Monitorklasse registriert den Namen der Methode
und die exakte Uhrzeit der Methodenausführung. Für
jede Zielsprache gibt es eine eigene Monitorklasse, d.h.
für COBOL, PL/I. C++, C# und für Java. Daraus
entsteht eine Trace-Datei in der alle ausgeführten
Methoden samt Ausführungszeit aufgelistet sind.

Zur gleichen Zeit werden vom Testwerkzeug, die
Beginn- und Endzeiten von jedem angestoßenen Testfall
festgehalten. Daraus geht eine Liste der ausgeführten
Testfälle mit ihrer Beginn- und Endzeiten hervor. Diese
Liste wird anschließend mit der Trace-Datei der
ausgeführten Methoden abgeglichen. Jede Methode, die
zwischen dem Startpunkt und dem Endpunkt eines
Testfalls ausgeführt wird, liegt auf dem Pfad jenes
Testfalls. Der Pfad eines Testfalls ist letztlich eine Kette
Methodenausführungen. Jede Methode auf dem Pfad
eines Testfalles liegt im Wirkungsbereich – Impact
Domain – des Testfalles. Das Ergebnis ist eine binäre
Beziehungstabelle in der die Testfälle auf die Methoden
verweisen, die sie ausführen. Durch die Invertierung
dieser Tabelle kommen die Beziehungen von den
Methoden zu den Testfällen zum Vorschein. Jede
Methode kann von einem oder mehreren Testfällen
betroffen sein. Falls eine Methode von keinem Testfall
überquert wird, ist dies ein Indikator, dass die Methode
zumindest nicht in dieser Anwendung verwendet wird.

2.3 Verbindung zu den Anforderungen
In den dritten Schritt wird eine Verbindung zu den
Anwendungsfällen und damit auch zu den
Anforderungen hergestellt. Jeder Testfall bezieht sich
auf einen bestimmten Anwendungsfall. In dem Moment,
in dem ein Testfall spezifiziert wird, weiß der Tester,
welchen Anwendungsfall er damit testet. Dies wird in
der Testfallbeschreibung dokumentiert. Deshalb gibt es
in jedem Testfall einen Verweis auf den
Anwendungsfall, der damit getestet wird.

Andererseits erfüllt jeder Anwendungsfall eine oder
mehrere Anforderungen. In der Beschreibung der
Anwendungsfälle gibt es Verweise auf die
Anforderungen, die sie erfüllen bzw. auf die
Geschäftsregel, die sie implementieren. Daraus folgt
eine Verbindung zwischen den Testfällen, den
Anwendungsfällen und den Anforderungen. Ein Testfall

testet einen bestimmten Anwendungsfall und dieser
erfüllt wiederum mehrere Anforderungen. Über den
Testfall kommt die Verbindung zu den Codeklassen
zustande, da die Testfälle auf die Methoden in den
Klassen verweisen.

3 Modellbildung

Nachdem die Tabellen der Codebausteine, Testfälle,
Anwendungsfälle und Anforderungen vorliegen, wird
mit der Modellbildung begonnen. Dies geschieht mit
dem Tool SoftRepo, einem Tool mit einer
Importschnittstelle, über die die Ergebnisse der anderen
Werkzeuge importiert werden. Von dem statischen
Analysator kommt die Tabelle mit dem
Inhaltsverzeichnis der Code-Komponente, von dem
dynamischen Analysator die Tabelle der Testfall zu
Codebaustein-Beziehungen, von der Testfall-
spezifikation die Tabelle der Testfall zu
Anwendungsfall-Beziehungen, und von der
Spezifikation der Anwendungsfälle die Verweise von
dem Anwendungsfall auf die Anforderungen.

SoftRepo braucht diese Tabellen nur zu sortieren und
einander zuzuordnen, um ein Beziehungsgeflecht von
den Codebausteinen über die Testfälle zurück zu den
Anforderungen zu bilden. Dargestellt wird das
Beziehungsgeflecht bzw. das Systemmodell, in der
Form einer Baumstruktur. Der Baum kann sowohl von
unten – bottom-up – oder von oben – top-down –
betrachtet werden. Von unten wählt der Betrachter einen
bestimmten Codebaustein, z.B. eine Klasse oder eine
Methode. Ausgehend von diesem Knoten wird der
Baum nach oben aufgefaltet. Es folgen die Testfälle, die
Anwendungsfälle und die Anforderungen, die diesen
Codebaustein benutzen. Von oben wählt der Betrachter
eine bestimmte Anforderung als Ausgangspunkt. danach
wächst der Baum nach unten. Es folgen die
Anwendungsfälle, die diese Anforderung erfüllen, die
Testfälle, die jene Anwendungsfälle testen und die
Codebausteine, die von diesen Testfällen ausgeführt
werden. Der Kreis schließt sich. Aus dem
Beziehungsnetz wird ein Beziehungsbaum.

4 Der Nutzen des Modells

Ein solches Systemmodell hat einen mehrfachen
Nutzen, besonderes für die Reengineering der
Architektur. Die drei Nutzarten sind:
• Gewinnung von Information
• Veränderung der Architektur
• Überprüfung der Reengineering Maßnahmen.

4.1 Gewinnung von Information
Zum einen kann es rein informativ verwendet werden.
Das Wartungspersonal kann schnell erkennen, welche
Codebausteine zu welchen Anwendungsfällen gehören.
Sie können auch sehen, welche anderen Codebausteine
von diesen abhängig sind. Wird z.B. eine Schnittstelle
neu gemacht, kann der Entwickler sehen, welche

Testfälle er wiederholen muss um die Schnittstelle zu
testen.

4.2 Veränderung der Architektur
Das Modell kann auch konstruktiv verwendet werden,
z.B. um Codebausteine innerhalb des Systems zu
versetzen. Eine Klasse könnte einer anderen
Komponente zugeordnet werden. Man hat die
Möglichkeit den Baum zu editieren, in dem man
Baumknoten nach oben oder nach unten rückt. Dabei ist
zu erkennen, wie die Beziehungen von und zu diesem
Knoten sich verändern. Der Benutzer kann auch neue
Knoten hinzufügen, z.B. neue Codebausteine oder neue
Anwendungsfälle. Auf dieser Weise ist es möglich,
strukturelle Änderungen in dem Modell zu simulieren
ohne den Code selbst anzufassen.

4.3 Überprüfung der Reengineering Maßnahmen
Schließlich wird das Modell verwendet um einzelne
Komponente zu sanieren. Die sanierten Komponenten
erfüllen die gleiche Funktionalität wie bisher und
behalten die gleichen Schnittstellen zu den anderen
Komponenten, werden jedoch intern überarbeitet.
Methoden werden gespalten und Daten versetzt.

Durch einen automatisierten Vergleich der beiden
Modelle lässt sich erkennen, welche Komponente sich
wie verändert haben, welche Modellelemente
hinzukommen und welche weggefallen sind. Die
veränderten Knoten werden farblich von den alten
unterschieden. Dieser Abgleich der alten und neuen
Systemstrukturen ist der erste Schritt in der Verifikation
der durchgeführten Reengineering Maßnahmen. Der
nächste Schritt ist der Codeabgleich, bei dem die alten
und neuen Komponenten anweisungsweise verglichen
werden. Mit dem Strukturabgleich lassen sich die
groben Reengineering Fehler erkennen. Der
Modellabgleich soll für jedes neue Release wiederholt
werden.

5 Schlussfolgerung

Ein dynamisches Modell der Beziehungen zwischen
Testfällen, Anforderungen und Codebausteinen stellt
Traceability her, dokumentiert die Testüberdeckung und
trägt dazu bei, die Konsistenz eines Softwaresystems zu
bewahren. Ein relationales Repository wie SoftRepo ist
eine wichtige Voraussetzung dafür.

Literaturhinweise
[ACDM2002]Antoniol,G./Canfora,G./DeLucia,A./Merlo,E.:
“Recovering traceability Links between Code and
Documentation”, IEEE Trans. on S.E., Vol. 28, No. 10, Oct.
2002, p. 970
[GDS2006]Greevy,O./Ducasse,S./Girba,T.:Analyzing
software evolution through feature views”, JSME, Vol. 18,
No. 6, Dec. 2006, p. 425
[Hayes2005] Hayes,J./Dekhtyar,A./Sundarian,S.: “Improving
after the fact Tracing and Mapping of Requirements”, IEEE
Software, Dec. 2005, p. 30
[Lehn2013] Lehnert, S./Farooq, Q./Riebisch, M.: Rule-based
Impact Analysis for heterogeneous Software Artifacts”, IEEE
Proc.of CSMR2013, Genova, March 2013, p. 209

An Architecture for Toolbox-based Software Architecture
Reconstruction Solutions

Ana Dragomir, M. Firdaus Harun, Horst Lichter
Research Group Software Construction

RWTH Aachen University
Ahornstr. 55

52074 Aachen, Germany
{ana.dragomir, firdaus.harun, horst.lichter@swc.rwth-aachen.de}

ABSTRACT
Although up-to-date architecture views outstandingly aid
the understanding, meaningful evolution and evaluation of
software systems, software architecture reconstruction tools
are still not broadly employed in the industry. While this sit-
uation might seem contradictory, we have identified - based
on our experience with two industry cooperation partners -
some important improvement potentials that could increase
the usefulness of the current state of the art reconstruction
approaches and thus lead to a better industry acceptance.
In this paper we present a general architecture for construct-
ing tool-box-based software architecture reconstruction so-
lutions that enable the flexible integration of various analysis
plug-ins on a per need basis while addressing the improve-
ment directions identified earlier. Furthermore, we present
an instantiation of this architecture that enables the recon-
struction of architecture behavior views on more abstraction
levels. We conclude the paper with a tool implementation
overview of the latter architecture.

1. INTRODUCTION
Up-to-date software architecture descriptions can be of

enormous help, when software architecture migration and
modernization activities need to be performed. Understand-
ing the dependencies of the various software systems as well
as the internals of each system in insolation is crucial and
paves the way to more accurate architecture evaluations and
goal-oriented evolution. In our previous work [1], we have
described the current state of the practice of two of our in-
dustry cooperation partners with respect to the need and
use of software architecture reconstruction tools to moni-
tor and evaluate complex industrial software landscapes. In
both companies, the architecture descriptions are elaborated
manually, resulting into considerable, continuous effort in-
vested into ensuring their consistency with the implemented
architectures, on the one side, or the emergence of very
implementation-close descriptions that lack an abstract view
of the described systems or the existence of only early elabo-
rated high-level views that can be hardly associated with the
actual implementation, on the other side. None of the two
industry partners employ architecture reconstruction tools,
although the current state of the art would seem to improve
their current situation. We have identified several reasons
why this is the case: (1) while some current solutions do ad-
dress the reconstruction of heterogeneous systems [3], they
are not actively used and their setup can be rather compli-
cated; (2) metrics that guide the architects to understand

where to start the architecture improvement from are often
missing; (3) the evolution of the reconstructed architectures
is not properly supported, for example by enabling the ar-
chitects to define evolution variants and identify the most
convenient ones; (4) reconstruction tools often use their spe-
cific architecture description terminology (e.g., Sonargraph-
Architect [4] allows only the definition of layers, layer groups,
vertical slices, vertical slices groups and subsystems) which
is often rejected by the architects, as it does not correspond
to their understanding of their systems.

In order to address these issues we propose an architecture
monitoring and analysis infrastructure (ARAMIS) that con-
tains an extendable tool-box to which architecture monitor-
ing and analysis plug-ins can be added on a per need basis.

2. ARAMIS - OVERVIEW AND EXAMPLE
In the following we first present the general architecture

of ARAMIS and then we give an instantiation example that
focuses on the architecture visualization and the analysis of
architecture violations during run-time

2.1 ARAMIS - General Architecture
Using ARAMIS (Figure 1) architects should be able to

extract architectural information from various, possibly het-
erogeneous systems in order to facilitate the recreation of
more complex architecture landscapes. To address this, it
should allow the easy addition and integration of technology-
specific architecture information collectors. Consequently, if
the extracted information is too heterogeneous (e.g., infor-
mation extracted from procedural code vs. information ex-
tracted from object oriented code) an intermediate process-
ing step that normalizes it to a common intermediate repre-
sentation might be required. The collected information can
then be stored in an architecture repository and/or can be
used directly for further analyses. Based on the extracted
information or on the intermediate representation, the ar-
chitects should be able to define the systems’ higher level
abstractions, using exactly the same terminology that they
are using in their day-to-day practice. This should be possi-
ble, even if the architects work with different abstractions in
different projects (e.g., Cobol systems are organized in sub-
systems, Java systems are organized in components and the
components are further organized in layers, etc.). The defi-
nition of the various architecture description languages that
comprise these abstractions, as well as their relation to each
other will thus constitute a so-called architecture modeling
language family. Once the extracted information is mapped

Figure 1: ARAMIS - General Architecture

on the abstractions chosen by the architects, various plug-
ins can be employed to further facilitate the analysis of the
results. E.g., based on the reconstructed views, metric plug-
ins can be added to compute structural or behavioral metrics
and/or to allow the definition and assessment of architec-
ture evolution variants. To gain access to the architecture
data necessary for their analyses, the plug-ins will register
themselves to an architecture information provider which
will consequently forward them relevant data whenever this
is extracted and/or persisted in the architecture repository
by any of the employed architecture information collectors.

2.2 ARAMIS - Instantiation Example
We have developed a first instantiation of ARAMIS, that

aims to analyze the architecture of software systems during
run-time (called ARAMIS-RT). The purpose of ARAMIS-
RT is to generate real-time visualizations of data monitored
during the run-time. The data should be visualizable on
multiple abstraction levels (communication between layers,
communication between components, etc.). In order to de-
fine these levels of abstraction, we are currently providing
the architects with a very simple architecture modeling lan-
guage that they can use to define their architecture model
of interest. As shown in Figure 2, the meta-model simply
depicts architectural units that can be further contained in
other architectural units. An architecture unit can have a
role (e.g. “layer”, “component”, “filter”, etc.) and can be
associated with various software units, as an abstraction
thereof. The software units are easily mappable on the data
extracted at run-time and represent the entities (in this case
- the class instances) between which the intercepted com-
munication occurs. Furthermore, the architect can define
architecture communication rules for the defined architec-
ture levels, and then check if these are obeyed or violated
during the execution of the system. The data is transmitted

Figure 2: ARAMIS-RT - An ARAMIS Implemen-
tation

in real-time via the XMPP communication protocol. Thus,
it is even possible for the architects to trigger the execu-
tion using the user interface of the application and then
observe almost instantly the way the various architectural
elements interacted and if violations occurred. In this case,
the XMPP server plays the role of the architecture infor-
mation provider, as it uses a publish/subscribe mechanism
to redirect the data collected during run-time to the two
registered plug-ins. Because we only interested in real-time
analyses, we did not include an architecture repository to
provide data storage for post-mortem investigations. This
will be however part of our future work. While ARAMIS-RT
is still under development, the results of the first evaluations
that we have performed look very promising [2].

3. CONCLUSION
In this paper, we have proposed a general architecture

for creating toolbox-based software reconstruction solutions
that aim towards improving the current state of the art and
achieving a better industry acceptance. We have then pre-
sented an instantiation of this architecture that aims at the
real-time monitoring of Java systems on more abstraction
levels and at the analysis of violations occurring during sys-
tem execution. In the future, we will further evolve and
evaluate ARAMIS-RT presented in this paper and assess its
industrial acceptance.

4. REFERENCES
[1] A. Dragomir, M. F. Harun, and H. Lichter. On bridging

the gap between practice and vision for software
architecture reconstruction and evolution – a tool
perspective. SAEroCon Workshop 2014, Sydney,
Australia, April 8, 2014.

[2] A. Dragomir and H. Lichter. Run-time monitoring and
real-time visualization of software architectures. In
Proceedings of the 20th Asia-Pacific Software
Engineering Conference, December 2013.

[3] J. Ebert, B. Kullbach, V. Riediger, and A. Winter.
Gupro: Generic understanding of programs – an
overview. In Electronic Notes in Theoretical Computer
Science, 2002.

[4] Sonargraph-Architect. https://www.hello2morrow.
com/products/sonargraph/architect, 2013.

Model-Driven Load and Performance Test Engineering in DynaMod∗

Eike Schulz2, Wolfgang Goerigk1, Wilhelm Hasselbring2, André van Hoorn3, Holger Knoche1

1 b+m Informatik AG, D-24109 Melsdorf
2 Software Engineering Group, Kiel University, D-24098 Kiel

3 Reliable Software Systems Group, University of Stuttgart, D-70569 Stuttgart

Abstract

Defining representative workloads, involving workload
intensity and service calls within user sessions, is a
core requirement for meaningful performance testing.
This paper presents the approach for obtaining rep-
resentative workload models from production systems
that has been developed in the DynaMod project for
model-driven software modernization.

1 Introduction

Workload generation is essential to systematically
evaluate performance properties of software systems
under controlled conditions. For example, for load,
stress, and regression testing or benchmarking it is
necessary to expose the system to workload, i.e.,
to generate requests to provided services. Manual
load generation is not practical for various reasons.
Hence, automatic generation of synthetic workload is
a common practice in performance evaluation [1, 2, 4]
and different approaches have been proposed (e.g.,
[3, 4, 5, 9]). Established tools for generating requests
from workload specifications exist, typically based on
recorded traces or analysis models. However, one of
the biggest challenges is still to obtain representative
workload specifications similar to production usage.

In the software modernization context, the existing
legacy system can be utilized for valid test case gen-
eration. An adequate domain (business) model of the
legacy system is very useful—if not even necessary—
for modernization. Together with usage profiles from
production systems, it can be exploited for model-
based test development as well.

This paper presents a systematic semi-automatic
model-driven approach to obtain and execute rep-
resentative workload specifications for session-based
systems, based on use case specifications and refined
by quantitative workload information, such as tran-
sition probabilities, think times, behavior mix, etc.
The approach was developed as part of our DynaMod
project for model-driven software modernization [8],
which is depicted in Figure 1. In DynaMod, a com-
bination of static and dynamic reverse engineering

∗This work was funded by the German Federal Ministry of
Education and Research under grant number 01IS10051.

Legacy
System

Domain
Model

Static
Analysis

Current
Architecture
Model

Dynamic
Analysis

Target
Architecture
Model

Definition of Transformations

Modernized
System

Code
Generation

Test
Cases

Model-Based
Testing

Figure 1: DynaMod software modernization approach

techniques is used to reconstruct architectural models
of the legacy system. Employing model-driven tech-
niques [7], these models are transformed into archi-
tectural models and executable artifacts of the mod-
ernized system. Along with the modernized system
artifacts, performance tests are generated.

The latter activity forms the scope of this paper,
and is summarized in Section 2. Section 3 summa-
rizes the application of the approach to one of the
DynaMod case study systems. Section 4 draws the
conclusions and outlines future work. A more detailed
description of the approach can be found in [6].

2 Workload Model Construction

The workload modeling formalism of our previous
work [9] introduces workload models consisting of (i)
an application model and (ii) a weighted set of user
behavior models, which provides a probabilistic repre-
sentation of user sessions. A user session is a sequence
of related actions by the same user [5].

The workload model construction comprises four
complementary steps, as depicted in Figure 2:
(i) manual specification of the use cases and (ii) the
application model, (iii) dynamic analysis of the pro-
duction system (PS), and (iv) automatic extraction of
user behavior models from the production data. The

1.02 edit item

/edit.xhtml?..

Protocol Layer

0.01 login

1.01 add item

1.02 edit item

1.03 delete item

$ 0.6

0.2

0.2

0.6

0.5

0.3

0.4

0.3

0.20.5

User Behavior Model(s)

0.01 login

1.01 add item

1.02 edit item

1.03 delete item

Application Model

Session Layer

Manual Specification

0.01 login

1.01 add item

1.02 edit item

1.03 delete item

Use Cases (Domain)

Workload Generation
Workload Model

SUT

0.2

Manual Specification

Behavior Mix (%)

Manual Specification

Automatic Extraction

login

Click: "Add Item"

Click: "Add Item"

Click: "Delete item"

$

Dynamic Analysis

Screen Flows (Sessions)

Production
System

(PS)

1.03 delete item

/delete.xhtml?..

Edit: "Amount"

Figure 2: Overview of our approach

behavior and application models are used in a subse-
quent step to generate test plans to be executed by a
suitable load driver.

A basic assumption in our approach is that the pro-
duction system and the system under test (SUT) share
a common domain model (cf. Figure 1), including the
set of use cases that are specified manually. The
application model is manually created based on the
use cases, reflected on the application model’s session
layer. SUT-specific details are modeled on the pro-
tocol layer. Based on a dynamic analysis of the pro-
duction system, user sessions are reconstructed. The
set of user behavior models and its weighting func-
tion (behavior mix) are extracted from these sessions.
The structure of the behavior models is given by the
application model’s session layer.

3 Case Study

We applied our approach to one of the DynaMod case
study systems [8], namely AIDA-SH, which is an in-
formation management and retrieval system for in-
ventory data of historical archives. The system is
a client-server application based on the Visual Ba-
sic 6 platform and is being used in production by
several German archives. As part of the DynaMod
research project, a modernized prototype version of
the system, called AIDA-Gear, was developed employ-
ing model-driven software development techniques [7],

which served as the SUT. The set of use cases, from
which we created the application model, was provided
by domain experts. We obtained runtime traces from
the PS instrumented with the Kieker monitoring tool
[10]. The extraction of user sessions—in form of exe-
cuted VB6 UI events—and user behavior models was
automated using the tool support for our approach
developed in the DynaMod project. The generated
workload models were executable on the SUT using
JMeter/Markov4JMeter [9].

4 Conclusions and Future Work

We sketched our approach to systematic and semi-
automatic creation and execution of representative
workloads for load tests of session-based systems
based on dynamic analysis results of legacy systems.
It is based on previous work on DynaMod [8] and on
modeling and executing probabilistic and intensity-
varying workloads [9]. Details are also provided in [6].
Future work will be to increase the degree of automa-
tion, e.g., by integrating the approach into a model-
driven software development platform [7] and to assess
the validity of the obtained workload models.

References
[1] Paul Barford and Mark Crovella. Generating repre-

sentative web workloads for network and server perfor-
mance evaluation. In Proc. SIGMETRICS ’98/PERFOR-
MANCE ’98, 1998.

[2] Raj Jain. The Art of Computer Systems Performance
Analysis. Wiley, New York, 1991.

[3] Diwakar Krishnamurthy, Jerome A. Rolia, and Shikharesh
Majumdar. A synthetic workload generation technique for
stress testing session-based systems. IEEE TSE, 32(11),
2006.

[4] Daniel A. Menascé. Load testing of web sites. In IEEE
Internet Computing, 2002.

[5] Daniel A. Menascé, Virgilio A. F. Almeida, Rodrigo Fon-
seca, and Marco A. Mendes. A methodology for workload
characterization of e-commerce sites. In Proc. EC ’99,
1999.

[6] Eike Schulz. A model-driven performance testing approach
for session-based software systems, 2013. Student research
paper, Kiel University, Kiel, Germany.

[7] Thomas Stahl and Markus Völter. Model-Driven Soft-
ware Development – Technology, Engineering, Manage-
ment. Wiley & Sons, 2006.

[8] André van Hoorn, Sören Frey, Wolfgang Goerigk, Wilhelm
Hasselbring, and Holger Knoche et al. DynaMod project:
Dynamic analysis for model-driven software moderniza-
tion. In Proc. MDSM ’11, volume 708 of CEUR Workshop
Proc., 2011.

[9] André van Hoorn, Matthias Rohr, and Wilhelm Has-
selbring. Generating probabilistic and intensity-varying
workload for Web-based software systems. In Proc.
SIPEW ’08, 2008.

[10] André van Hoorn, Jan Waller, and Wilhelm Hasselbring.
Kieker: A framework for application performance moni-
toring and dynamic software analysis. In Proc. ICPE ’12.
ACM, 2012.

Towards Quality Models in Software Migration

Gaurav Pandey, Jan Jelschen, Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany
{pandey,jelschen,winter}@se.uni-oldenburg.de

Abstract

To preserve legacy systems in continuous software de-
velopment and evolution, next to redevelopment, they
can be migrated to new environments and technolo-
gies. Deciding on evolution and migration strategies
early, requires predicting the quality of the migrated
software systems depending on applied tools. There is
a need for comparable measures, estimating the inner
software quality of legacy and target systems.

Technically, software migration tools use a trans-
formation-based toolchain using model-driven tech-
nologies. Therefore, quality measurement can be
based on the underlying models representing input
and output of applied migration tools.

This paper proposes a Software Migration Quality
Model in order to provide support for quality-driven
tailoring of utilized model-driven migration tools.

1 Motivation

Software Migration comes across as an important
technique to evolve legacy systems into new environ-
ments and technologies without changing the system’s
functionality [4]. It continues the modernization, op-
eration and development of software without dealing
with the risk and cost of a complete redevelopment
[8]. Each migration project requires an especially tai-
lored toolchain [2], aiming at preferably automatically
transferring legacy to target. Moreover, deciding be-
tween software migration and redevelopment as well
as choosing the components of migration toolchain,
requires reliable predictions regarding quality of mi-
grated software. To achieve this, there is a need to
measure and compare the quality of the legacy soft-
ware, migrated software and the intermediate software
stages.

Monitoring changes in software-quality during soft-
ware development is supported by various incremental
approaches: e.g. Teamscale [3] and SonarQube [9].
These approaches are restricted to a single implemen-
tation platform. Since language based software mi-
grations, e.g. migrating from COBOL to Java, deal at
least with two different development platforms, cross
platform monitoring is needed. This challenges for
providing metrics, which are applicable in both envi-
ronments allowing comparison of quality issues across
platforms.

Software Migration
ToolchainQuality Control Center

Q-MIG

M1

M2

M3

M4

analysis tools

input source
code files

output
source code

files

transformation tools

code generator tools

metrics

quality
reports

quality control tools

Figure 1: The Q-MIG integrated toolchain.

The Q-MIG-project1 (Quality-driven software MI-
Gration) aims at monitoring changes in software qual-
ity during migration and at supporting quality driven
decisions on migration strategies and tooling [6].

2 Q-MIG

Q-MIG combines software migration toolchain [1]
with a quality control center (cf. Figure 1). It al-
lows for software quality management during the mi-
gration process including quality prediction during
project planning and tooling. The monitoring points
(M1-M4) allow to measure, monitor and compare the
quality in the software toolchain. Here, migration
and quality tools are integrated. Cross-platform qual-
ity comparison is achieved by the calculation of same
metric at monitoring points. Moreover, calculation of

1Q-MIG is a joint venture of pro et con Innovative Infor-
matikanwendungen GmbH, Chemnitz and Carl von Ossietzky
University’s Software Engineering Group. It is funded by Cen-
tral Innovation Program SME of the German Federal Ministry
of Economics and Technology – BMWi (KF3182501KM3).

different metrics at the monitoring points, that rep-
resent the same quality, also enables quality compar-
ison. This is particularly useful when the implemen-
tations of the quality metrics differ across the moni-
toring points, but their interpretations are the same.
Also, analyzing the quality of migrated software with
respect to tools used, helps in determining the combi-
nation of components in migration toolchain.

The software migration toolchain in Figure 1 can
technically be viewed as a combination of model-
driven tools. As model driven environments can han-
dle code and model in the same fashion, we define
the internal representation of the two as a codel. At
various monitoring points these codels are available
for picking the artifact’s quality prior and after each
migration step.

As the migration toolchain is already model-driven,
model-based approaches to measure the quality can
be applied. Measurement of the quality of codels can
be based on querying [7] which has been stressed as
an important enabling technology in software evolu-
tion. So, quality measurement and monitoring in soft-
ware migration can utilize the already existing model-
driven query tools to calculate and to compare the
quality of succeeding codels.

3 Software Migration Quality Model

Measuring and comparing quality of succeeding codels
requires to align metrics, codels and the applied mi-
gration tools, which can be viewed as model trans-
formations, in a Software Migration Quality Model.
Figure 2 shows a conceptual view on this model.

The quality model for software migrations (Q-MIG-
Model) aligns Components providing the required
transformation services (Transformations). It also
aligns the originating and resulting Codels to migra-
tion projects specific QualityModels which summarize
all Metrics defining the project specific quality issues.
For each Codel all relevant metrics-values are stored.
These Values will be monitored during migration and
knowledge on changing their values during migration
will help to predict the quality of migration results.

Metrics are calculated by applying Queries to
Codels resulting in the appropriate Values. Since the
Codels conform to certain language definitions (either
grammars or meta models) defining the codel’s ab-
stract syntax, the Queries also have to conform to
the language definitions.

Migration steps can be viewed as services realized
by Components according to the service-based tool in-
tegration approach SENSEI [5]. Separating the Com-
ponents from the implemented Transformations al-
lows for considering and comparing different migra-
tion tools like different COBOL-to-Java Translators.

Next steps in Q-MIG deal with specifying relevant
metrics in COBOL-to-Java migration projects and ap-
plying these values to all codels in a given migration
tool chain to provide an initial migration monitoring.

Figure 2: Software Migration Quality Model.

4 Summary

This paper presented the first steps in the Q-MIG
project in providing a quality-driven support to soft-
ware migration. The strongly model-driven founda-
tion of Q-MIG was given by referring to Q-MIG’s Soft-
ware Migration Quality Model.

References

[1] C. Becker, U. Kaiser. Test der semantischen
Äquivalenz von Translatoren am Beispiel von CoJaC.
Softwaretechnik-Trends, 32(2), 2012.

[2] J. Borchers. Erfahrungen mit dem Einsatz einer
Reengineering Factory in einem großen Umstellungs-
projekt. HMD, 34(194): 77–94, Mar. 1997.

[3] CQSE GmbH. Teamscale, 2014. http://www.cqse.

eu/en/products/teamscale/overview/.
[4] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kai-

ser, V. Riediger, W. Teppe. Model-Driven Software
Migration — Process Model, Tool Support and Appli-
cation. In A. D. Ionita, M. Litoiu, G. Lewis, editors,
Migrating Legacy Applications: Challenges in Service
Oriented Architecture and Cloud Computing Environ-
ments. IGI Global, Hershey, PA, USA, 2012.

[5] J. Jelschen. SENSEI: Software Evolution Service Inte-
gration. In CSMR-WCRE Software Evolution Week,
Antwerp, Belgium, 469–472, 2014. IEEE.

[6] J. Jelschen, G. Pandey, A. Winter. Towards Quality-
Driven Software Migration. In Proceedings of the
1st Collaborative Workshop on Evolution and Main-
tenance of Long-Living Systems, Kiel, 8–9, 2014.

[7] B. Kullbach, A. Winter. Querying as an Enabling
Technology in Software Reengineering. In 3rd Euro-
pean Conference on Software Maintenance and Reengi-
neering, 42–50. IEEE Computer Society, 1999.

[8] H. M. Sneed, E. Wolf, H. Heilmann. Softwaremigration
in der Praxis: Übertragung alter Softwaresysteme in
eine moderne Umgebung. Dpunkt, Heidelberg, 2010.

[9] SonarSource. SonarQube, 2014. http://www.

sonarqube.org.

http://www.cqse.eu/en/products/teamscale/overview/
http://www.cqse.eu/en/products/teamscale/overview/
http://www.sonarqube.org.
http://www.sonarqube.org.

A Tool-Supported Quality Smell Catalogue
For Android Developers

Jan Reimann, Martin Brylski, Uwe Aßmann
Software Technology Group

Technische Universität Dresden
Dresden, Germany

jan.reimann|uwe.assmann@tu-dresden.de, martin.brylski@gmail.com

Usual software development processes apply optimi-
sation phases in late iterations. The developed arte-
facts are optimised regarding particular qualities. In
this sense refactorings are executed since the existing
behaviour is preserved while the artefact improves its
quality properties. In the area of mobile applications
qualities (e.g. energy or memory efficiency) is cru-
cial due to limited hardware resources. The problem
is twofold. First, there is no unified set of potential
problems which can cause an artefact to dissatisfy a
quality requirement. Such a set must contain not only
the indicators to search for and a relation to specific
qualities, but it must also provide solutions to resolve
them. Second, no tool support exists to enable develop-
ers focussing problems regarding specific qualities. To
overcome these problems we introduce a new quality
smell catalogue for Android applications in this paper
and provide tool support.

1 Motivation
The quality requirements of applications may be spec-
ified explicitly in the requirements document, or be-
come present in optimisation phases when deficiencies
regarding the qualities are noticed, as e.g. that the
battery of a mobile device drains too fast. What de-
velopers do when optimising w.r.t to such qualities is
refactoring [2]. They manually detect relevant arte-
facts containing structures being responsible for not
satisfying the particular quality requirements. Fowler
calls such structures bad smells which indicate can-
didates for applying refactorings to improve qualities
while preserving the internal behaviour.

Against this background we correlated the concepts
bad smell, quality and refactoring, and introduced the
term quality smell. A quality smell is a bad smell
with regard to a specific quality expressing that this
bad smell negatively influences the given quality of
a model. In particular, the identified quality smell
can be resolved by a concrete model refactoring [5].
We implemented the concept of quality smells within

our generic model refactoring framework1 [6] for en-
abling developers to detect and resolve quality smells
in early development phases already and focus specific
qualities explicitly. Our tool is based on the Eclipse
Modeling Framework and seamlessly integrates into
existing model-driven setups.

In contrast to Fowler’s bad smells and refactorings
(being universally applicable), quality smells are very
concrete because satisfying a particular quality require-
ment has different meanings or granularities in distinct
contexts. Thus, the principle of a quality smell is uni-
versal in a particular domain but the concrete instance
is specific because it refers to a precise setting, as e.g.
the use of a concrete framework. Because of this we
decided to focus the context of mobile development
since quality requirements play an essential role in this
area. We chose Android since it is publicly available.
The problem in mobile development is that developers
are aware of quality smells only indirectly because their
definitions are informal (best-practices, bug tracker
issues, forum discussions etc.) and resources where to
find them are distributed over the web. It is hard to
collect and analyse all these sources under a common
viewpoint and to provide tool support for developers.

To overcome these limitations we compiled a unified
catalogue for Android. It contains 30 possible quality
smells, explaining which qualities they influence, and
potential refactorings to resolve them.

2 Quality Smell Catalogue
We have created a catalogue containing 30 quality
smells. In the following we present only one quality
smell but the whole catalogue can be found here:

http://www.modelrefactoring.org/smell_catalog/

Based on the catalogues from Brown et al. [1],
Fowler [2] and Gamma et al. [3] we derived a scheme
in Table 1 which each quality smell conforms to.

1http://www.modelrefactoring.org/

http://www.modelrefactoring.org/smell_catalog/
http://www.modelrefactoring.org/

Table 1: Scheme of a quality smell
Concept Description
Name unique and descriptive iden-

tifier
Context categoric relation (e.g. UI,

sensors, etc.)
Affected Qualities lists qualities negatively influ-

enced by this quality smell
Description detailed description of the

specific problem including an
example

Refactorings explains refactorings being
able to resolve this quality
smell

References further (web) resources con-
taining more information re-
garding this quality smell

Related Quality Smells list of similar or related
smells

As an example the quality smell Data Transmission
Without Compression is presented in the following.2

Name Data Transmission Without Compression

Context Implementation, Network

Affected Qualities Energy Efficiency

Description In [4] Höpfner and Bunse discussed
that transmitting a file over a network infrastructure
without compressing it consumes more energy than
with compression. More precisely, energy efficiency
is improved in case the data is compressed at least
by 10%, transmitted and decompressed at the other
network node.

The example in Listing 1 shows file transmission
implemented with the Apache HTTP Client Library.3
With the help of JaMoPP4 we can refer to Java code
in terms of a model.

1 public static void main(String[] args) throws Exception {
2 HttpClient httpclient = new DefaultHttpClient();
3 HttpPost httppost = new HttpPost("http://some.url:8080/

servlets-examples/servlet/RequestInfoExample");
4 FileBody bin = new FileBody(new File(args[0]));
5 StringBody comment = new StringBody("A␣binary␣file");
6 MultipartEntity reqEntity = new MultipartEntity();
7 reqEntity.addPart("bin", bin);
8 reqEntity.addPart("comment", comment);
9 httppost.setEntity(reqEntity);

10 System.out.println("executing␣request␣" + httppost.
getRequestLine());

11 HttpResponse response = httpclient.execute(httppost);
12 HttpEntity resEntity = response.getEntity();
13 EntityUtils.consume(resEntity);
14 }

Listing 1: File transmission without compression
before refactoring

2For the missing properties References and Related Quality
Smells we refer to the online catalogue.

3The example was taken and adapted from http:
//archive.apache.org/dist/httpcomponents/httpclient/
binary/httpcomponents-client-4.2.4-bin.zip.

4http://www.jamopp.org

In line 4 one can see that the passed File object in this
constructor is transmitted without compression.

Refactorings The refactoring Add Data Compres-
sion to Apache HTTP Client based file transmission
adds a compression method. Then it passes the File

parameter of the constructor in line 4 of Listing 1
to this method. Thus, the file is transmitted with
compression. In Listing 3 the result of this refactor-
ing is depicted. Line 3 contains the invocation of the
compression method gzipFile(File uncompressedFile).

1 public static void main(String[] args) throws Exception {
2 // ...
3 FileBody bin = new FileBody(gzipFile(file));
4 // ...
5 }
6 private static File gzipFile(File file){
7 File gzFile = File.createTempFile(file.getName(), "gz");
8 FileInputStream fis = new FileInputStream(file);
9 GZIPOutputStream out = new GZIPOutputStream(new

FileOutputStream(gzFile));
10 byte[] buffer = new byte[4096];
11 int bytesRead;
12 while ((bytesRead = fis.read(buffer)) != -1){
13 out.write(buffer,0, bytesRead);
14 }
15 fis.close();
16 out.close();
17 return gzFile;
18 }

Listing 2: File transmission with compression after
refactoring

3 Conclusion
In this paper we motivated the need for a quality smell
catalogue. As a representative the exemplary qual-
ity smell Data Transmission Without Compression is
presented. Our tool can be used to detect the smell
by searching for uncompressed data transmission im-
plemented with the Apache HTTP Client framework.
Beyond that it provides a refactoring to resolve the
quality smell which adds file compression to the iden-
tified class. The whole catalogue can be seen online.

References
[1] W. H. Brown, R. C. Malveau, and T. J. Mowbray.

AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. Wiley, 1st edition, 1998.

[2] M. Fowler. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[4] H. Höpfner and C. Bunse. Towards an Energy-
Consumption Based Complexity Classification for Re-
source Substitution Strategies. In 22nd Workshop
"Grundlagen von Datenbanken 2010", 2010.

[5] J. Reimann and U. Aßmann. Quality-Aware Refac-
toring For Early Detection And Resolution Of Energy
Deficiencies. In 4th International Workshop on Green
and Cloud Computing Management, 2013.

[6] J. Reimann, M. Seifert, and U. Aßmann. On the reuse
and recommendation of model refactoring specifica-
tions. Software & Systems Modeling, 12(3):579–596,
2013.

http://archive.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.2.4-bin.zip
http://archive.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.2.4-bin.zip
http://archive.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.2.4-bin.zip
http://www.jamopp.org

Architectural Restructuring by Semi-Automatic Clustering to
Facilitate Migration towards a Service-oriented Architecture

Marvin Grieger, Stefan Sauer
Universität Paderborn, s-lab – Software Quality Lab

Zukunftsmeile 1, 33102 Paderborn
{mgrieger, sauer}@s-lab.upb.de

Markus Klenke
TEAM GmbH

Hermann-Löns-Straße 88, 33104 Paderborn
mke@team-pb.de

1 Introduction
Enterprises are nowadays increasingly faced with the
fact that their information systems have become leg-
acy. A common solution to this problem is to migrate
the existing application to a new environment, e.g. to a
new platform. Modern platforms often employ the ar-
chitectural style of service-oriented architecture (SOA),
in which an application is composed of loosely coupled
entities that provide functionality as a service. The
challenge in migrating towards a service-oriented ar-
chitecture is to identify these entities in the legacy ap-
plication and restructure its architecture accordingly.

In this paper we describe a semi-automatic process
which combines hierarchical and partitioning clustering
in order to improve an initial service design. The result
is used to restructure the legacy application during the
migration process. The purpose of the approach is to
create a maintainable, service-oriented architecture. It
is being developed in the context of an industrial pro-
ject in which a model-driven software migration proc-
ess and tool chain is built [1]. It will be applied on a set
of enterprise legacy applications.

The paper is structured as follows: The case study is
briefly introduced in Section 2. In Section 3 we de-
scribe our approach using an example. Section 4 dis-
cusses related work in this area. Thereafter we present
preliminary results and outline future work in Sec-
tion 5.

2 Case Study
The case study is based on a platform migration from
Oracle Forms to Oracle ADF. On the source platform,
the main concept of an application is to provide masks
as user interfaces to interact with an underlying data-
base. Applications consist of multiple modules, where
each module is implemented separately. A module
consists of module components, for which we assume
that each includes exactly one mask as well as related
data connections and business logic. In migrating to-
wards the target platform, services have to be identi-
fied. As the user realizes business processes by travers-
ing masks, a single module provides functionality that
is related to one or more sequential activities in the un-
derlying process. Thus, a module can be seen as a
business service, according to the classification of ser-
vice types given in [2].

Mapping modules to services results in applications
that are hard to maintain, since many fine-grained ser-
vices emerge. Therefore, composite services need to be
identified, which aggregate and orchestrate the busi-
ness services. In addition, since the capabilities of the
legacy platform for software reuse were quite limited,
code clones are omnipresent in every application we
examined. Removing these clones by extracting the
functionality and moving it into one single service will
again increase the maintainability of the resulting ap-
plication and additionally reduce the effort of manual
reimplementation that is necessary.

3 Restructuring Process
The general idea of the approach is illustrated in Fig-
ure 1. As described in Section 2, there exist fine-
grained business services as an initial service design.
Additionally, we assume the existence of a dedicated
composite service, which is externally callable as an
entry point for an end user. The initial service design
can be seen in Figure 1 (I).

Composite
1

Composite
0

Business
1

Business
2

Business
5

Business
6

Business
2

Business
5

Business
4

Business
6

Business
1

Business
3

Composite
0

Business
3

Business
4

I I I

I I I

Infra-
structure

Utility

Composite
2

Composite
1

Composite
0

Business
1

Business
2

Business
5

Business
6

Business
3

Business
4

Composite
2

Figure 1: Illustrative example

The process related to our approach is shown in Fig-
ure 2. Based on the initial service design, hierarchical
and partitioning clustering are performed to improve it
gradually. These two activities consist of multiple steps
which are described in detail subsequently.

3.1 Hierarchical Clustering

The first step of the restructuring process is to perform
hierarchical clustering based on the dependencies be-
tween the services. As the dependencies constitute
navigation flows, the resulting clusters are expected to

aggregate services that are related in terms of the un-
derlying business process. The clusters are then im-
plemented by introducing additional composite ser-
vices, as can be seen in Figure 1 (II).

Figure 2: Restructuring process

As illustrated in Figure 2, hierarchical clustering con-
sists of three activities, which are performed repeat-
edly. Each iteration starts by calculating new clusters
for a hierarchy layer. This is performed automatically
using a clustering algorithm. The result gets refined
manually since it may not be optimal. This is due to the
fact that clustering is performed on navigation flows
rather than the business processes itself. The calculated
clusters are then realized by introducing composite ser-
vices. For that, predefined restructuring rules are exe-
cuted. Depending on the size of the application, further
iterations may be performed.

3.2 Partitioning Clustering

The second step of the restructuring process is to detect
and remove software clones. This is achieved by parti-
tioning the functionalities of multiple services into in-
dividual and common parts. Common parts are cut out
and moved to a single service. This might be an exist-
ing one or a newly created utility or infrastructure ser-
vice. The purpose of these types of services is to pro-
vide cross-cutting domain or technical functionalities
that are used across different services. Therefore, these
services do not belong to a specific layer calculated
during the hierarchical clustering. The result of this
step is shown in Figure 1 (III).

The partitioning clustering consists of five activities
that are executed repeatedly, as shown in Figure 2.
First, automatic clone detection is performed to suggest
candidates of software clones. In order to do this, a
strategy has to be defined where to search for clones,
i.e., which services are being compared and for which
functionalities clones are being detected. The reengi-
neer thereafter selects clones that are to be removed.
Based on this information, an algorithm determines re-
structuring possibilities, i.e., where to implement the
functionality that should be cut out. As a result, it may
either suggest the reengineer to move the functionality
to an existing service or to create a new one. After the
reengineer performs a decision, the restructuring is ap-
plied by executing a set of predefined restructuring
rules.

4 Related Work
Migration towards SOA is an active area of research
 [3] [4] [5]. In contrast to most of the existing approa-
ches, we assume that an initial service design exists,
based on a mapping of existing legacy structures. As a
result, we focus on identifying composite services in-
stead of business services. In addition, we consider the
use of clone detection for further refinement of the ser-
vice design. To the best of our knowledge, no approach
has combined these techniques in the context of a mi-
gration towards SOA.

5 Preliminary Results and Future Work
This approach is being developed in an industrial con-
text. It has already been applied in the migration of an
enterprise legacy system. Based on the described proc-
ess, systematic restructuring steps have been derived
which were manually applied on an application. We
were able to show that the restructured service design
was better in terms of increased maintainability and re-
duced effort for manual reimplementation, compared to
a migration without restructuring.

The initial service design is improved by introducing
new services and moving functionality between exist-
ing ones. In practice, a merge operation for small ser-
vices is desired which may complement the approach.
We are currently working on a tool that supports the
activities described in the process. Automation will re-
duce the effort of restructuring and reduce the risk of
manual errors. Afterwards, we will evaluate the ap-
proach with multiple applications.

6 Literature
[1] Grieger, M.; Güldali, B.; Sauer, S.: Sichern der

Zukunftsfähigkeit bei der Migration von Legacy-
Systemen durch modellgetriebene Software-
entwicklung. In Softwaretechnik-Trends 32(2):37-
38, 2012.

[2] Alahmari, S.; Zaluska, E.; De Roure, D.: A service
identification framework for legacy system migra-
tion into SOA. In Proc. IEEE Intl. Conf. on Ser-
vice Computing (SCC 2010), pp. 614-617, 2010.

[3] Fuhr, A.; Horn, T.; Riedinger, V.: Using dynamic
analysis and clustering for implementing services
by reusing legacy code. In Proc. 18th Working
Conf. Reverse Engineering (WCRE 2011), pp.
275-279, 2011.

[4] Zhang Z.; Liu, R.; Yang, H.: Service identification
and packaging in service oriented reengineering. In
Proc. Intl. Conf. Software Engineering and Know-
ledge Engineering (SEKE 2005), pp. 620-625,
2005.

[5] Matos, C.; Heckel, R.: Migrating legacy systems to
service-oriented architectures. Electronic Commu-
nications of the EASST, vol. 16, 2008.

Determining the Intent of Code Changes to Sustain

Attached Model Information During Code Evolution

Michael Langhammer, Max E. Kramer
Karlsruhe Institute of Technology

{michael.langhammer, max.e.kramer}@kit.edu

Abstract

If code is linked to models with additional information
that cannot be represented in the code, changes in the
code may have unwanted effects on these models. In
such scenarios, the desired effect of code changes may
be unclear and impossible to determine regardless of
the used change recording or propagation mechanism.
Existing round-trip engineering tools do not solve this
problem as they just support models that contain only
information that can be regenerated from the code
or drop such information. In this position paper,
we propose an approach for controlled code evolution
that automatically maps unambiguous code changes
to well-defined operations and that blocks ambiguous
changes until the user clarified his intent. We present
a case study for Java code and component-based ar-
chitectures to show how such an approach would only
permit code changes with unambiguous effects on the
architecture. To stimulate discussions at the work-
shop, we argue why such an approach is necessary and
describe benefits and drawbacks of such a solution.

1 Introduction

In Model-Driven Software Development (MDSD), a
software system may be described by its source code
and with models that represent a part of the system
from a specific perspective for a specific task. The
used modelling languages and model instances may be
tailored to specific development and analysis tasks so
that they display only the required information. If the
same information is required for several tasks, then
information may be spread across various models. In
such cases, all artefacts have to be mutually synchro-
nized to avoid differences between code and models
(drift) and inconsistencies (erosion) during software
evolution. There are several ways to bypass this need
for synchronization: Redundant information can be
completely disallowed or strict refinement can be em-
ployed so that every information has a unique origin
and redundant elements in other artefacts can always
be regenerated [3]. A problem arises, however, if at-
tached models contain information that can neither be
represented nor be computed from the code. In such
cases, code changes may occur for which the intended
impact on attached models is unclear.

2 Approach

We propose a co-evolution approach that differen-
tiates between unambiguous and ambiguous code
changes with respect to a linked model. We use the
Java Model Printer and Parser (JaMoPP) [4] to ob-
tain a syntax tree model so that we can directly work
on code model changes instead of textual changes.

Unambiguous changes are changes where the im-
pact to the linked model and the intent of the user
are clear. For example, when the effect on the linked
model has been specified upfront in a transformation.
This means a change is unambiguous when the corre-
sponding operations on the linked models are clear.

Ambiguous changes, however, are changes where
the intent of the developer cannot be determined auto-
matically. In our approach, these changes are blocked
to let the developer clarify his intent in a way that
unambiguously induces an operation on the attached
models. If a developer moves, for example, a method
from one class to another, additional information on
design rationale, which is not represented in the code
but in attached models, may become obsolete for the
new system. As the developer has no access to this in-
formation in the code editor, it is unclear which effect
on this information he desired for this code change.
The desired effect of his change cannot be determined
with confidence without any further information or
assumptions regardless of the used change recording
or propagation mechanism. For our method move
example, this means, that the developer can specify
whether the former design rationale for the method
is still valid. After this, the source code change is
mapped to an operation on the syntax model and can
be propagated to the linked models using model-to-
model transformations that use the additional clarifi-
cation information.

If a developer cannot or does not want to clarify
the impact on linked models, we may obtain inconsis-
tencies that have to be resolved later or by others.

The benefit of our approach is that models, which
contain additional information with unclear code-
correspondence, are kept synchronized with the source
code. Hence the effort for manually synchronization
between the model and source code is reduced to the
provision of clarifying information. Since we do not

1

class WebGUIImpl implements IHTTP {

public File download(Request r){

//Handle request

}}

source codedeveloper

sync engine change classifier

component model

changes (1)

notify (2)

unambiguous (3)

ambiguous (3’)

in
ten

t
(4

)

sync (5)

WebGUI

Figure 1: The proposed approach applied to Java
source and a component-based architecture model.

regenerate the linked model, additional information
that is not represented in the source code is sustained
in the models. Furthermore, developers are notified
when their changes affect linked models, which gives
developers the possibility to influence the impact on
linked models. A drawback of our approach is that
the workflow of developers may get interrupted when
the changes they made are blocked until clarification.

We will embed the proposed approach into a view-
centric engineering framework [5]. Change implica-
tions will be specified with declarative metamodel
mappings and instance level correspondences between
code regions and linked models will be automatically
managed in a tracing model. Using this information
we will check whether the current code change affects
code elements that are linked to another model.

3 Application scenario

An application scenario of the proposed approach is
to synchronize Java source code and component-based
architecture models (see Figure 1) with additional per-
formance information from the Palladio simulator [2].
Palladio models consist of components, interfaces and
signatures, which are represented in the source code
e.g. in terms of interfaces, classes and method decla-
rations (cf. [5]). If a developer changes (1), for ex-
ample, the name of an architecture relevant interface,
then this change is unambiguous (2,3) and the corre-
sponding interface in the component model can be re-
named automatically (5). If a developer renames (1),
for example, a class method that implements a sig-
nature of an architecture relevant interface, then the
impact on the component architecture is not clear (2).
The developer has to be asked (3’) whether he wants
to change the signature of the component interface
or whether the changed method should no longer be
linked to the architecture interface (4). If he chooses
the first option, this will also influence other parts

of the code: all corresponding methods of classes that
realize components that provide the corresponding ar-
chitecture interface will be renamed as well (5).

4 Related Work

The Software Model Extractor (SoMoX) [3] is able to
generate component models from source code. The ar-
chitecture is, however, not updated incrementally and
additional information added manually to the gener-
ated architectureis lost during regeneration. UML-
Lab1 supports round-trip engineering for UML class
diagrams and source code. It does, however, not
support additional information in the class diagrams
which can not be represented in the source code. The
Orthographic Software Modeling (OSM) [1] approach
proposes the use of a Single Underlying Model (SUM)
that contains all information of a particular software
system. This approach does not need to synchronize
information between models because there is no re-
dundant information in the SUM. It is, however, an
open question how a SUM for object-oriented code
and component-based architectures can be obtained.

5 Conclusion

In this position paper, we have presented an approach
for the co-evolution of source code and models that
contain additional information. We have also briefly
described an application scenario using Java source
code and component-based architecture models. In
the future, the presented approach could be the foun-
dation for a round-trip engineering approach in which
code and models can evolve in parallel even if they
partly contain independent information.

References

[1] Colin Atkinson, Dietmar Stoll, and Philipp
Bostan. “Orthographic Software Modeling: A
Practical Approach to View-Based Develop-
ment”. In: Evaluation of Novel Approaches to
Software Engineering. Vol. 69. 2010, pp. 206–219.

[2] Steffen Becker, Heiko Koziolek, and Ralf Reuss-
ner. “The Palladio component model for model-
driven performance prediction”. In: Journal of
Systems and Software 82.1 (2009), pp. 3–22.

[3] Steffen Becker et al. “Reverse engineering com-
ponent models for quality predictions”. In: Soft-
ware Maintenance and Reengineering (CSMR),
2010 14th European Conference on. IEEE. 2010.

[4] Florian Heidenreich et al. “Closing the gap be-
tween modelling and java”. In: Software Lan-
guage Engineering. Springer, 2010, pp. 374–383.

[5] Max E Kramer, Erik Burger, and Michael Lang-
hammer. “View-centric engineering with syn-
chronized heterogeneous models”. In: Proceedings
of the 1st Workshop on VAO. ACM. 2013.

1http://www.uml-lab.com/

	derakh.pdf
	Introduction
	Model and Code Relationships
	Implications
	Concluding Remarks

	pandey.pdf
	Motivation
	Q-MIG
	Software Migration Quality Model
	Summary

	reimann.pdf
	Motivation
	Quality Smell Catalogue
	Conclusion

